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clinical variables
Traumabase clinical records.
An n X p matrix, each entry is missing with probability 0.01
> p=5 = =~ 95% of rows kept;
> p=300 = ~ 5% of rows kept.



Missing data and linear models

» Classic literature focuses on

3 /42

estimation and imputation MCAR
(Rubin 76) via (missing completely at random)
> Likelihood based IHEPS) = HE0)
methods under MAR. MAR (missing at random)
»> Multiple imputation P(M|X) = P(M| X))
under MAR. MNAR (missing not at random)

Linear model

Y = X7 8* + noise

> Y € R (regression) outcome is always observed
» X € RY contains missing values!

» (3* model parameter




Estimation vs prediction: what is the difference? ./

1. Estimation:

» provide an estimate of B*

— Inference, and prediction with complete data.



Estimation vs prediction: what is the difference? ./

1. Estimation:

» provide an estimate of B*

— Inference, and prediction with complete data.

2. Prediction:

> We want to predict Y for a new X with missing entries

Warning: A good estimate of 5* does not lead to a prediction of Y

X = (na, 5,na, —6) XTp~=77



Formalizing the problem 5/ 42

> Assumption - The response Y is a function of the (unavailable)
plus some noise:

Y=f"(X)+e XeR’) YeR

» Optimization problem:

. 2
" mln)dHRR(f) =E {(Y —f( )) }
> A is a minimizer of the risk. It is given by:
F*(X) := E [ Y| Xobs(mr), M] = E [£(X)[Xops(ay, M]
where M € {0,1}9 is the missingness indicator.
> The R* is the risk of the Bayes predictor: R* = R(f*).

> A function f achieves the Bayes rate, i.e, R(f) = R*.



Supervised learning with missing values o/

X =X®(1-M)+NA® M. New feature space is RY = (R U {NA})<.

4.6 91 NA 1 91 85 1 0 10
79| ¢ 21 NA 3 21 35 3 010
Y= 8.3 X = NA 9.6 2 X= 6.7 9.6 2 M= 1 00
4.6 NA 55 6 42 55 6 1 00



Supervised learning with missing values o

X =X®(1—M)+NA® M. New feature space is RY = (R U {NA})“.

4.6 91 NA 1 91 85 1 0 10
79| ¢ 21 NA 3 21 35 3 010
Y= 8.3 X = NA 9.6 2 X= 6.7 9.6 2 M= 1 00
4.6 NA 55 6 42 55 6 1 00

- 2
f* ¢ argmin E [(Y— f(X)) ] .
f: RISR

f*()?) = Z E [Y|Xobs(m)a M= m] Tr=m
me{0,1}4

= One model per pattern (29) (Rubin, 1984, generalized propensity score)
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Make prediction with missing data great again T

f*()?) = Z E [Y|Xobs(m)a M = m] Tp=m
me{0,1}9

» Difficulty due to the half nature of the input space

> Worst case: 29 models to learn
Two common strategies:

> Impute-then-regress strategies - impute the data then learn on
the imputed data set

» Computationally efficient but possibly inconsistent

> Pattern-by-pattern strategies - use a different predictor for each
missing pattern
> Consistent by design but intractable in most situations



Summary 5142

1. Impute-then-regress procedures with consistent predictors



Impute-then-Regress procedures 0/

» Impute-then-Regress procedures consist in

1. Impute missing values
2. train a supervised learning algorithm on the imputed data set.



Impute-then-Regress procedures

» Impute-then-Regress procedures consist in
1. Impute missing values

2. train a supervised learning algorithm on the imputed data set.
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» More formally, define Impute-then-Regress procedures as functions

of the form:
go®, whered € F', g :RY— R.

O O &M (x2,x3)

OF O

where imputation functions O
® ¢ F! are of the form:

O i (x.x)



Impute-then-Regress procedures o/ 42

» Impute-then-Regress procedures consist in

1. Impute missing values
2. train a supervised learning algorithm on the imputed data set.

» More formally, define Impute-then-Regress procedures as functions
of the form:
go®, whered € F', g :RY— R.

O QF o1 X2,X3)
& ®
()
where imputation functions O Qg SDE‘m)(Xz’)Q’)
® € F! are of the form:

Can Impute-then-Regress procedures be Bayes optimal?



Impute-then-Regress procedures are Bayes optimal 7«

Given an imputation function ®, we define g3 the minimizer of
the population risk on imputed data as

~\2
gy € argmin E [(Y —go CD(X)) ] .
g:RI—R



Impute-then-Regress procedures are Bayes optimal 7«

Given an imputation function ®, we define g3 the minimizer of
the population risk on imputed data as

~ \2

gs € argmin E [(Y —go CD(X)) ] .
g:RI—R

Theorem ( Le Morvan et al., 2021 )

Assume that X admits a density, the response Y is generated as
Y = f*(X) +e and ® € F (C> imputation functions). Then,

e for all missing data mechanisms,

e and for almost all imputation functions,

84 © ® is Bayes optimal.




Impute-then-Regress procedures are Bayes optimal 7«

Given an imputation function ®, we define g3 the minimizer of
the population risk on imputed data as

~ \2

gy € argmin E [(Y —go CD(X)) ] .
g:RI—R

Theorem ( Le Morvan et al., 2021 )

Assume that X admits a density, the response Y is generated as
Y = f*(X) +e and ® € F (C> imputation functions). Then,

e for all missing data mechanisms,

e and for almost all imputation functions,

84 © ® is Bayes optimal.

For almost all imputation functions, and all missing data
mechanisms, a universally consistent algorithm trained on the
imputed data is a consistent procedure.



Which imputation function should one choose? /e
b :}Q\

May be a good imputation
would still provide an
easier learning problem?

Why bother!
From now on I use constant
imputations!




Which imputation function should one choose? /e

&

@7 \©
|
b

Question Are there continuous Impute-then-Regress
decompositions of Bayes predictors?

May be a good imputation
would still provide an
easier learning problem?

Why bother!
From now on I use constant
imputations!

From now on, we suppose f* (Byes predictor with complete data) is
smooth and consider the conditional expectation ¢/



Learning on conditionally imputed data e

Question What can we say about the optimal predictor on the
conditionally imputed data: gj¢, o ®<'?



Learning on conditionally imputed data e

Question What can we say about the optimal predictor on the
conditionally imputed data: gj¢, o ®<'?

Theorem ( Le Morvan et al., 2021 )

Suppose that f* o ®< is not Bayes optimal, and that the probability of
observing all variables is strictly positive, i.e., P(M = 0, X = x) > 0, for
all x. Then there is no continuous function g such that g o ®¢ is Bayes
optimal.

> In the above setting, g5 is not continuous. Thus, imputing via
conditional expectation leads to a difficult learning problem.

» Almost all imputations lead to consistent estimators but some ease
the training of the supervised learning algorithm.



Summary so far 13/

f*()?) = Z E [Y|Xobs(m)a M = m] Tp=m
me{0,1}9

Two common strategies:

» Impute-then-regress strategies - impute the data then learn on the
imputed data set
» Computationally efficient but possibly inconsistent
> Consistent if used with a non-parametric learning algorithm (forests,
tree boosting, nearest neighbor...)

> Pattern-by-pattern strategies - use a different predictor for each
missing pattern
> Consistent by design but intractable in most situations



Summary e

2. Linear regression with missing values



Missing data and linear models 18/ o2

MCAR

Predict on new data, which may (missing completely at random)
. .. . P(M|X) = P(M)

contain missing entries.

MAR (missing at random)
P(M|X) = P(M|Xx(eb2))

MNAR (missing not at random)

Linear model

Y = X7 8* + noise

> Y € R (regression) outcome is always observed
» X € RY contains missing values!

» (3* model parameter
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Linear models do not remain linear

Let
YIX1+X2 +€,

where X5 = exp(X1) + 1. Now, assume that only Xj is observed. Then,
the model can be rewritten as

Y =X+ eXp(Xl) +e+eé,

where f(X1) = X1 + exp(X1) is the Bayes predictor.

Here, the submodel for which only Xj is observed is not linear.

= There exists a large variety of submodels for a same linear model.
= Submodel natures depend on the structure of X and on the
missing-value mechanism.



Handling missing values in linear models for prediction’*

2 possible approaches
» Patter-by-pattern methods
» Impute-then-regress procedures

10° . - 102 - .
NE= Cst-imp+LR —— 0-lmP+SGQ
‘l ~#- MICE+LR —N= opt|—|mpl+R|dge
10? | = NeuMiss 10t 1/ --m- MICE+Ridge
| -#- P-by-Pimp A - Patby-Pat
o hy,s- —4— Thresholded P-by-P imp 2 /1 —+ NeuMiss
w 1 o :
g 10 1 . x o apeit :
b = & 10
~ | ~
) 0 v
z 10 ‘Il 4
x 107t
1071
' o d=vr' d=ni S
1072 10 - :
10t 102 103 104 10t 102 103
Number of training samples Number of features d

Fixed dimension Fixed sample size



Different strategies for prediction

A

d

2) Impute then regress:
Naive imputation [Ayme et al 2023] d = \/Z

1) Specific methods:
Pattern-by-pattern regression [Ayme et al 2022]

v

18 / 42



Summary 10/ e

3. Linear regression: A pattern-by-pattern approach



Specific methods: formalization 20/ 42

» Dataset D, = {(Z, Y;),i € [n]} where
Zi - (Xobs(l\/l,)a MI)

> New test point Z = (Xops(n), M) (with unknown target Y).

Goal in prediction

Find a linear function f that minimizes the risk

Ruiss(f) = E [(F(Z) - Y)2] .




Pattern-by-pattern Bayes predictor 2 /42

Consider either

> X ~N (1, X) Gaussian (G)
or,

> X|(M=m)~N(u™ ™) Gaussian pattern mixture model (GPMM)

Decompose the Bayes predictor

f*(Z) = Z f;(Xobs(m))ﬂM:ma
memM

with £* the Bayes predictor conditionally on the event (M = m).

Proposition [Le Morvan et al 2020]
If [[MCAR or MAR) and G] or GPMM then, for all m € M,

.
fxis linear.




A missing-distribution-free upper bound 2/ e

Predictor ?(Z) =D meM ?,,,(Xobs(m))]lM:m (pattern-by-pattern OLS)
where f,, is a modified least-square regression rule trained on

Dm= {(Xi,obs(m)7 Yl)v M; = m} .

Theorem (simplified) [Le Morvan et al. 2020] [Ayme, Boyer, Dieuleveut, S. 2022]
If [[MCAR or MAR) and G] or GPMM then

E [(F(Z) - f*(Z))z] < Iog(n)Zd%

where the constant depends on the level of noise.




A missing-distribution-free upper bound 2/ e

Predictor ?(Z) =D meM ?,,,(Xobs(m))]lM:m (pattern-by-pattern OLS)
where f,, is a modified least-square regression rule trained on

Dm= {(Xi,obs(m)7 Yl)v M; = m} .

Theorem (simplified) [Le Morvan et al. 2020] [Ayme, Boyer, Dieuleveut, S. 2022]
If [[MCAR or MAR) and G] or GPMM then

E [(F(Z) - f*(Z))z] < Iog(n)2d%

where the constant depends on the level of noise.

» This result does not depend on the distribution of missing patterns.

» Number of parameters is p := d2. This result suffers from the
curse of dimensionality even with small d.



A missing pattern distribution adaptive bound 2/

Idea: Regression only on high frequency missing patterns

Z f Xobs(m)) Am=m1 D, |>d-
meM



A missing pattern distribution adaptive bound 2/

Idea: Regression only on high frequency missing patterns

Z f Xobs(m)) Am=m1 D, |>d-
meM

Theorem [Ayme, Boyer, Dieuleveut, S. 2022]

B |(72)- (@) | Stogtos, (d/1).

with £, (d/n) := >, min(pm, d/n).

» Valid for MCAR, MAR and MNAR settings.

> Adaptive to missing data distribution via £, (d/n) < Card(M)(d/n).
Examples

1. Uniform distribution: &, (¢) =2%d/n

2. Bernoulli distribution: M; ~ B(e) with e < d/n: &, (¢) = d?/n



A lower bound 24 / a2

X|(M = m) ~ N (", £)
Let P, be a class of data distributions ¢ Linear model
P[M = m] = pm

Minimax (P) — min max Ep [(F(Z) - f*(Z))z}

error F IPEPP

Best algo



A lower bound 24/ 82

X|(M = m) ~ N (u", ™)
Let P, be a class of data distributions ¢ Linear model
]P[M = m] = Pm

Minimax(p) = min max Ep [(F(Z) - f*(Z))z}

error f PEP,,

Best algo  Worst case on a class
Py of problems

Theorem [Ayme, Boyer, Dieuleveut, S. 2022]
1 inimax B 2 d
25, (1) 5 M) < & | (2) - (@) ] 5 oetoe (£




A lower bound 24 / 42

X|(M = m) ~ N (u", ™)
Let P, be a class of data distributions ¢ Linear model
]P[M = m] = Pm

Minimax(p) = min max Ep [(F(Z) - f*(Z))z}

error f PEP,,

Best algo  Worst case on a class
Py of problems

Theorem [Ayme, Boyer, Dieuleveut, S. 2022]

25y (1) & Mmenip) <8 | (F2) - 1(2))°

n
Examples
» Uniform distribution o (t)y=2%/n & (2)=2%d/n
» Bernoulli distribution M; ~ B(¢) Ep(t)=d/n & (2)= d*/n

with e < d/n
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Take-home messages

1= For data regimes where n is large, several problems can be learned,
even for MNAR.

1= The procedure can be modified to adapt to the distribution of
missing patterns.

== The dimension is an issue, even under the classical assumptions
(MAR)



Summary /e

4. Linear regression: Impute-then-regress procedures via zero-imputation



Impute-then-regress? 27/ 42

» |mpute-then-regress method

1. Impute the missing values by 0 to get Ximp (e.g., via df.£il1na(0))
2. Perform a SGD regression



Impute-then-regress? 27/ 42

» |Impute-then-regress method

1. Impute the missing values by 0 to get Ximp (e.g., via df.£il1na(0))
2. Perform a SGD regression

» Focus on MCAR values: My, ..., Mg ~ B(p)
p = probability to be observed

impute by 0= doesn’t exploit observed values?



Risk decomposition 20 / o2

» R* = optimal risk without missing data
> R*

> iss = optimal risk with missing data

Amiss := R

miss

_R*
» Rimp(0) = the risk of fy(Xons, M) = GTX;mp
> Rimp(0imp) = optimal risk of linear prediction after imputation by 0
Aimp/miss = imp(ei*mp) - Rr*niss
» Risk decomposition:
RmisS(fe) = R"+ + Rmiss (o) — Rimp(ei*mp)

estimation/optimization error




Toy example: how imputed inputs disturb learning >/«

» Complete model
> Y=X
> X = (X,..., %)
> R*=0
> Ml,---,MdNB(1/2)



Toy example: how imputed inputs disturb learning >/«

» Complete model

> Y =X
> X =(X,...,X)
> R* =0

> My, ..., My~ B(1/2)

» With imputed inputs and 6; = (1,0,...,0)T
> X 01 = XuMs

> Rimp(01) = 1E[Y?]

> With imputed inputs and 6, =2(1/d,1/d,...,1/d)"
> Ximalz = 256 5, M;
> Rimp(62) = 1E [X]
> A‘“wss t Al,::'j,mia:—« i\i Rimp(ﬁl’) R* < \ % [Yz]



Toy example: how imputed inputs disturb learning >/«

» Complete model

> Y =X
> X =(X1,..., %)
> R* =0

> My,..., My~ B(1/2)

» With imputed inputs and 6; = (1,0,...,0)T
> X 01 = XuMs

> Rimp(61) = 1E[Y?]

> With imputed inputs and 6, =2(1/d,1/d,...,1/d)"
> Ximglz = 2X0 5, M,
> Rimp(02) = 2E [X?]
> An‘nss + Aimp,r’mi» i\i Rimp(el’) - R* < \ % [Yz]

correlation = low imputation/missing values error 7



Learning w/ imputed-by-0 data = ridge reg? %0/ 42
> Ridge-regularized risk with complete data

RA(0) = R(6) + All6]I3
> Standard in high-dimension settings
Theorem [Ayme, Boyer, Dieuleveut, S. 2023]

Under the MCAR Bernoulli model of probability p of observation and
Var(X;) =1V,

Rimp(6) = R(p8) + p(1 — p)[|6]3

Consequences

1. Amniss + Aimp,/miss = ridge bias for \ = 1;”

2. 6., on a small ball around 0 (implicit regularization)

v

1= |mputed MCAR missing values seem to be at the same price of ridge
regularization



Learning with low-rank and imputed-by-0 data s

> Low-rank data: covariance matrix ¥ = [XX ] is

r
_ vl
£=3 Ny
j=1

with Ay =--- = A, and r < d.
» Bias on low-rank data:

1—pr
Amiss + Aimp/miss rg Tp EE[Y2]

correlation = low imputation/missing values error !



Learning with imputed-by-0 data via SGD 2/

> Averaged SGD iterates:

Qimp.,t = [I - ’YXimp,tXin,t] aimp,t—l JF’YYtXimp,t
eimp.n - ﬁ Z::l gimp,t

Implicit regularization

» Why use SGD ?

1. Streaming online (one pass only)
2. Minimizes directly the generalization

risk R *
3. Friendly assumptions mp
4. Leverage the implicit regularization

of naive imputations choosing

Oimpo =0and y=1/d




Learning with imputed-by-0 data via SGD 33 /42

Theorem [Ayme, Boyer, Dieuleveut, S. 2023]

Under classical assumptions for SGD,

noise variance

E I:Rimp(éimp,n):l —R* < Amiss +Aimp/miss =+ ﬁ

P
ﬁnelmp”%"i_




Learning with imputed-by-0 data via SGD 33 /42

Theorem [Ayme, Boyer, Dieuleveut, S. 2023]

Under classical assumptions for SGD,

noise variance

E I:Rimp(éimp,n):l —R* < Amiss +Aimp/miss =+ ﬁ

P
ﬁnelmp”%"i_

» Example: low-rank setting

~ 1 1—p\r noise variance
E Rim eim n)| — R* < _Eyz
(Rime (. )] ~<pﬁ+ d )d A

» Imputation bias vanishes for d > /n



Naive imputation implicitly regularizes HD linear models

» MCAR inputs
(observation rate=p)

> Allin all

Performing Adding a ridge
standard linear regression regularization w/ parameter|
onimputed by Odata | - | A= ‘gmmaiene

2) Impute then regress: naive

MCAR assumption
The issue of missing

values vanishes
with the
dim

14 imputation [Ayme et al 2023]

d= Vi

1) Specific methods: pattern-by-pattern
regression [Ayme et al 2022]

2dd parameters

Minimax under
MAR/MNAR assumptions

n

v



Summary /e

5. Random features models: a way to study the success of naive
imputation



Toy example of Random features 36 /42

> Latent observations (hidden) Z € R” with p = 4:
Z = (age, weight, height, hair color)

» Target: Y = 37 Z+ noise
» We take randomly d features of Z to obtain X:
> Low dimension d = 2:

X = (age, height)

uncorrelated regime
> High dimension d = 10:

X = (age, height, height, age, weight, hair color, weight, age, height)

correlated regime



First random features models

Gaussian random features:
> Input: X;; = Z,-TWJ-
Latent variables Zi, ..., Z, "% N(0, 1)
weights Wy, ..., W, "~ Usrt)
» Output: Y; = ZT * + noise of variance o2

37 / 42



First random features models 37/ a2

Gaussian random features:
> Input: X;; = Z,-TWJ-
Latent variables Zy, ..., Z, "~ N(0, I,)
weights Wy, ..., Wy FRg U(sr1)
» Output: Y; = ZT * + noise of variance o2
Key quantities:
> R*(d) = optimal risk without missing data
> R*..(d) = optimal risk with missing data

Amiss (d) = [Ruiss (d) = R*(d)]

> R* (d) = optimal risk of linear prediction after imputation by 0

imp
Aimp/miss(d) [R&p(d) er:uss(d)}

RmiSS(fé) = R*(d) + + [Rmi%(fe) R;;np(d)]

estimation /optimization error




The story of naive imputation and missing values — */*

Theorem [Ayme, Boyer, Dieuleveut, Scornet 2024]

Under MCAR assumptions,
» Optimal risk without missing data

0%+ P;—d||,8*||§, when d < p
o2 when d > p

OB

» Error due to missing data

Amiss(d) = (L= p)2[|8*3 when d < p
Dmiss(d) < 511815, when d > p (with ¢, , < 1)
» Error due to linear prediction on imputed data
d—
s sl @) %Amisi}d) » when d < p
Aimp mi&\(d) + Amiss(d) < m”ﬂ ||2 When d 2 P




The story of naive imputation and missing values
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» Low dimensions (uncorrelated regime):

>

>

Missing values error represents 1 — p of the explained variance
without missing values: missing features are lost
Error due to imputation is negligible: imputation is optimal

39 / 42



The story of naive imputation and missing values — */*

1.0

0.8

0.6

0.4
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» Low dimensions (uncorrelated regime):

» High dimensions (correlated regime):

[=p Rimp (UB)
Rmis
R
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0.6
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Dimp + Amis (UB)
Dmis

0

100 200 300 400

> Missing values error represents 1 — p of the explained variance

without missing values:
» Error due to imputation is negligible:

> Error due to missing values error decreases exponentially fast:

> Extension of the low rank setting for the imputation bias:



Extension of the high dimensions result e

limg A e (d) + Ao (d) = 0 still holds, for instance when
» General random features:
> Non-linear inputs: X;; = ¢(Z;, W))
> Non-linear output: Y = f*(Z) + ¢ with f* continuous
Ex: Random Fourier features (RFF)
W, = (A, B) ~ N(0, 1) ® U([0, 2x])
Xij= cos(AjTZ,- + B))
» Non-MCAR missing values:
Ex: Logistic model on the latent covariate:

1

P(M; =1]Z) = P



Conclusion o)

Bayes predictor *(X) = Zme{m}d E [Y|Xobs(m), M = m] T pj—m-
Two common strategies:

> Impute-then-regress strategies - impute the data then learn on the
imputed data set

» Computationally efficient but possibly inconsistent
> Consistent if used with a non-parametric learning algorithm

» Linear models - Zero imputation is inconsistent but converges in
high-dimensional settings (rate of \/d/n)

> Pattern-by-pattern strategies - use a different predictor for each
missing pattern
> Consistent by design but intractable in most situations

> Linear models - Rate of consistency of d?/n for independent
Bernoulli missing indicators but 2¢/n in general (not improvable)



a2 / a2

Conclusion

Thank youl

Tlmse‘.wlrlhgl_jné

fromincomplete data

v Near-optimal rate of consistency for linear models with missing values. A.
Ayme, C. Boyer, A. Dieuleveut, E. Scornet. ICML 2022.

w Naive imputation implicitly regularizes high-dimensional linear models. A
Ayme, C. Boyer, A. Dieuleveut, E. Scornet. ICML 2023.

= Random features models: a way to study the success of naive imputation.
A. Ayme, C. Boyer, A. Dieuleveut, E. Scornet. ICML 2024.
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Numerical XP for prediction

10° 103 10°
Cst-imp+LR
MICE+LR
102 - NeuMiss 102 102
= P-by-Pimp
g 10 Thresholded P-by-P imp 4 10 g 10
é 10° é 10° é 10°
o -3 3
1071 107! 1071
1072 1072 1072
10% 102 10° 104 10* 10? 103 104 10% 102 10° 104
Number of training samples Number of training samples Number of training samples
MCAR MAR MNAR
Regressors Unbiased Rate Unbiased Rate Unbiased Rate
Cst-imp+LR No Fast No Fast No Fast
MICE+LR Yes Fast No Fast No Fast
NeuMiss Yes Fast Yes Slow Yes Slow
P-by-P Yes Slow Yes Slow Yes Slow

Tresh. P-by-P  Yes Slow Yes Fast Yes Fast




	Impute-then-regress procedures with consistent predictors
	Linear regression with missing values
	Linear regression: A pattern-by-pattern approach
	Linear regression: Impute-then-regress procedures via zero-imputation
	Random features models: a way to study the success of naive imputation
	Appendix

