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An n × p matrix, each entry is missing with probability 0.01

▶ p = 5 =⇒ ≈ 95% of rows kept;

▶ p = 300 =⇒ ≈ 5% of rows kept.
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3 / 42Missing data and linear models

▶ Classic literature focuses on
estimation and imputation
(Rubin 76) via
▶ Likelihood based

methods under MAR.
▶ Multiple imputation

under MAR.

MCAR
(missing completely at random)

P(M|X ) = P(M)

MAR (missing at random)
P(M|X ) = P(M|X (obs))

MNAR (missing not at random)

Linear model

Y = XTβ⋆ + noise

▶ Y ∈ R (regression) outcome is always observed

▶ X ∈ Rd contains missing values!

▶ β⋆ model parameter



4 / 42Estimation vs prediction: what is the di�erence?

1. Estimation:

▶ provide an estimate of β⋆

→ Inference, and prediction with complete data.

2. Prediction:

▶ We want to predict Y for a new X with missing entries

Warning: A good estimate of β⋆ does not lead to a prediction of Y

X = (na, 5, na,−6) X⊤β⋆ = ??
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5 / 42Formalizing the problem

▶ Assumption - The response Y is a function of the (unavailable)
complete data plus some noise:

Y = f ⋆(X ) + ε, X ∈ Rd , Y ∈ R.

▶ Optimization problem:

min
f :(R∪{NA})d 7→R

R(f ) := E
[(

Y − f (X̃ )
)2]

▶ A Bayes predictor is a minimizer of the risk. It is given by:

f̃ ⋆(X̃ ) := E
[
Y |Xobs(M),M

]
= E

[
f (X )|Xobs(M),M

]
where M ∈ {0, 1}d is the missingness indicator.

▶ The Bayes rate R⋆ is the risk of the Bayes predictor: R⋆ = R(f̃ ⋆).

▶ A Bayes optimal function f achieves the Bayes rate, i.e, R(f ) = R⋆.



6 / 42Supervised learning with missing values

X̃ = X ⊙ (1−M) + NA⊙M. New feature space is R̃d = (R ∪ {NA})d .

Y =


4.6
7.9
8.3
4.6

 X̃ =


9.1 NA 1
2.1 NA 3
NA 9.6 2
NA 5.5 6

 X =


9.1 8.5 1
2.1 3.5 3
6.7 9.6 2
4.2 5.5 6

 M =


0 1 0
0 1 0
1 0 0
1 0 0



Finding the Bayes predictor.

f ⋆ ∈ argmin
f : R̃d→R

E
[(

Y − f (X̃ )
)2]

.

f ⋆(X̃ ) =
∑

m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m

⇒ One model per pattern (2d) (Rubin, 1984, generalized propensity score)
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7 / 42Make prediction with missing data great again

Bayes predictor.

f ⋆(X̃ ) =
∑

m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m

▶ Di�culty due to the half nature of the input space

▶ Worst case: 2d models to learn

Two common strategies:

▶ Impute-then-regress strategies - impute the data then learn on
the imputed data set
▶ Computationally e�cient but possibly inconsistent

▶ Pattern-by-pattern strategies - use a di�erent predictor for each
missing pattern
▶ Consistent by design but intractable in most situations



8 / 42Summary

1. Impute-then-regress procedures with consistent predictors

2. Linear regression with missing values

3. Linear regression: A pattern-by-pattern approach

4. Linear regression: Impute-then-regress procedures via zero-imputation

5. Random features models: a way to study the success of naive
imputation



9 / 42Impute-then-Regress procedures

▶ Impute-then-Regress procedures consist in

1. Impute missing values
2. train a supervised learning algorithm on the imputed data set.

▶ More formally, de�ne Impute-then-Regress procedures as functions
of the form:

g ◦ Φ, where Φ ∈ F I , g : Rd 7→ R.

where imputation functions
Φ ∈ F I are of the form:

x2

x3

x2

x3

φ
(m)
1 (x2, x3)

φ
(m)
4 (x2, x3)

Can Impute-then-Regress procedures be Bayes optimal?
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10 / 42Impute-then-Regress procedures are Bayes optimal

Given an imputation function Φ, we de�ne g⋆
Φ the minimizer of

the population risk on imputed data as

g⋆
Φ ∈ argmin

g :Rd 7→R
E
[(

Y − g ◦ Φ(X̃ )
)2]

.

Theorem ( Le Morvan et al., 2021 )



10 / 42Impute-then-Regress procedures are Bayes optimal

Given an imputation function Φ, we de�ne g⋆
Φ the minimizer of

the population risk on imputed data as

g⋆
Φ ∈ argmin

g :Rd 7→R
E
[(
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Assume that X admits a density, the response Y is generated as
Y = f ⋆(X ) + ε and Φ ∈ F I

∞ (C∞ imputation functions). Then,

• for all missing data mechanisms,

• and for almost all imputation functions,

g⋆
Φ ◦ Φ is Bayes optimal.
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∞ (C∞ imputation functions). Then,

• for all missing data mechanisms,

• and for almost all imputation functions,

g⋆
Φ ◦ Φ is Bayes optimal.

For almost all imputation functions, and all missing data
mechanisms, a universally consistent algorithm trained on the
imputed data is a consistent procedure.



11 / 42Which imputation function should one choose?

Why bother!

From now on I use constant 
imputations!

 
May be a good imputation 
would still provide an 
easier learning problem?

Question Are there continuous Impute-then-Regress
decompositions of Bayes predictors?

From now on, we suppose f ⋆ (Byes predictor with complete data) is
smooth and consider the conditional expectation ΦCI .
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12 / 42Learning on conditionally imputed data

Question What can we say about the optimal predictor on the
conditionally imputed data: g⋆

ΦCI ◦ ΦCI ?

Theorem ( Le Morvan et al., 2021 )

Suppose that f ⋆ ◦ ΦCI is not Bayes optimal, and that the probability of
observing all variables is strictly positive, i.e., P(M = 0,X = x) > 0, for
all x . Then there is no continuous function g such that g ◦ ΦCI is Bayes
optimal.

▶ In the above setting, g⋆
ΦCI is not continuous. Thus, imputing via

conditional expectation leads to a di�cult learning problem.

▶ Almost all imputations lead to consistent estimators but some ease
the training of the supervised learning algorithm.



12 / 42Learning on conditionally imputed data

Question What can we say about the optimal predictor on the
conditionally imputed data: g⋆

ΦCI ◦ ΦCI ?

Theorem ( Le Morvan et al., 2021 )

Suppose that f ⋆ ◦ ΦCI is not Bayes optimal, and that the probability of
observing all variables is strictly positive, i.e., P(M = 0,X = x) > 0, for
all x . Then there is no continuous function g such that g ◦ ΦCI is Bayes
optimal.

▶ In the above setting, g⋆
ΦCI is not continuous. Thus, imputing via

conditional expectation leads to a di�cult learning problem.

▶ Almost all imputations lead to consistent estimators but some ease
the training of the supervised learning algorithm.



13 / 42Summary so far

Bayes predictor.

f ⋆(X̃ ) =
∑

m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m

Two common strategies:

▶ Impute-then-regress strategies - impute the data then learn on the
imputed data set
▶ Computationally e�cient but possibly inconsistent
▶ Consistent if used with a non-parametric learning algorithm (forests,

tree boosting, nearest neighbor...)

▶ Pattern-by-pattern strategies - use a di�erent predictor for each
missing pattern
▶ Consistent by design but intractable in most situations
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1. Impute-then-regress procedures with consistent predictors

2. Linear regression with missing values

3. Linear regression: A pattern-by-pattern approach

4. Linear regression: Impute-then-regress procedures via zero-imputation

5. Random features models: a way to study the success of naive
imputation
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Our aim

Predict on new data, which may
contain missing entries.

MCAR
(missing completely at random)

P(M|X ) = P(M)

MAR (missing at random)
P(M|X ) = P(M|X (obs))

MNAR (missing not at random)

Linear model

Y = XTβ⋆ + noise

▶ Y ∈ R (regression) outcome is always observed

▶ X ∈ Rd contains missing values!

▶ β⋆ model parameter
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Let
Y = X1 + X2 + ε,

where X2 = exp(X1) + ε1. Now, assume that only X1 is observed. Then,
the model can be rewritten as

Y = X1 + exp(X1) + ε+ ε1,

where f (X1) = X1 + exp(X1) is the Bayes predictor.

Here, the submodel for which only X1 is observed is not linear.

⇒ There exists a large variety of submodels for a same linear model.
⇒ Submodel natures depend on the structure of X and on the
missing-value mechanism.
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2 possible approaches

▶ Patter-by-pattern methods

▶ Impute-then-regress procedures
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1. Impute-then-regress procedures with consistent predictors

2. Linear regression with missing values

3. Linear regression: A pattern-by-pattern approach

4. Linear regression: Impute-then-regress procedures via zero-imputation

5. Random features models: a way to study the success of naive
imputation
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▶ Dataset Dn = {(Zi ,Yi ), i ∈ [n]} where

Zi = (Xobs(Mi ),Mi ).

▶ New test point Z = (Xobs(M),M) (with unknown target Y ).

Goal in prediction

Find a linear function f̂ that minimizes the risk

Rmiss(f̂ ) = E
[(

f̂ (Z )− Y
)2]

.



21 / 42Pattern-by-pattern Bayes predictor

Consider either

▶ X ∼ N (µ,Σ) Gaussian (G)

or,

▶ X |(M = m) ∼ N (µm,Σm) Gaussian pattern mixture model (GPMM)

Decompose the Bayes predictor

f ⋆(Z ) =
∑
m∈M

f ⋆m(Xobs(m))1M=m,

with f ⋆m the Bayes predictor conditionally on the event (M = m).

Proposition [Le Morvan et al 2020]

If [(MCAR or MAR) and G] or GPMM then, for all m ∈ M,

f ⋆m is linear.
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Predictor f̂ (Z ) =
∑

m∈M f̂m(Xobs(m))1M=m (pattern-by-pattern OLS)

where f̂m is a modi�ed least-square regression rule trained on

Dm =
{
(Xi,obs(m),Yi ),Mi = m

}
.

Theorem (simpli�ed) [Le Morvan et al. 2020] [Ayme, Boyer, Dieuleveut, S. 2022]

If [(MCAR or MAR) and G] or GPMM then

E
[(

f̂ (Z )− f ⋆(Z )
)2]

≲ log(n)2d
d

n

where the constant depends on the level of noise.

▶ This result does not depend on the distribution of missing patterns.

▶ Number of parameters is p := d2d . This result su�ers from the
curse of dimensionality even with small d .
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Idea: Regression only on high frequency missing patterns

f̂ (Z ) =
∑
m∈M

f̂m(Xobs(m))1M=m1|Dm|⩾d .

Theorem [Ayme, Boyer, Dieuleveut, S. 2022]

E
[(

f̂ (Z )− f ⋆(Z )
)2]

≲ log(n)Ep (d/n) ,

with Ep (d/n) :=
∑

m min(pm, d/n).

▶ Valid for MCAR, MAR and MNAR settings.

▶ Adaptive to missing data distribution via Ep (d/n) ⩽ Card(M)(d/n).

Examples

1. Uniform distribution: Ep
(
d
n

)
= 2dd/n

2. Bernoulli distribution: Mj ∼ B(ε) with ε ⩽ d/n: Ep
(
d
n

)
= d2/n
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Let Pp be a class of data distributions


X |(M = m) ∼ N (µm,Σm)
Linear model
P[M = m] = pm

Minimax
error (p) = min

f̃︸ ︷︷ ︸
Best algo

max
P∈Pp︸ ︷︷ ︸

Worst case on a class
Pp of problems

EP

[
(f̃ (Z )− f ⋆(Z ))2

]

Theorem [Ayme, Boyer, Dieuleveut, S. 2022]

σ2Ep
(
1

n

)
≲ Minimax

error (p) ⩽ E
[(

f̂ (Z )− f ⋆(Z )
)2]

≲ log(n)Ep
(
d

n
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25 / 42Take-home messages

☞ For data regimes where n is large, several problems can be learned,
even for MNAR.

☞ The procedure can be modi�ed to adapt to the distribution of
missing patterns.

☞ The dimension is an issue, even under the classical assumptions
(MAR)
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1. Impute-then-regress procedures with consistent predictors

2. Linear regression with missing values

3. Linear regression: A pattern-by-pattern approach

4. Linear regression: Impute-then-regress procedures via zero-imputation

5. Random features models: a way to study the success of naive
imputation



27 / 42Impute-then-regress?

▶ Impute-then-regress method

1. Impute the missing values by 0 to get Ximp (e.g., via df.fillna(0))
2. Perform a SGD regression

▶ Focus on MCAR values: M1, . . . ,Md ∼ B(ρ)
ρ = probability to be observed

MCAR
(missing completely at random)

P(M|X ) = P(M)

MAR (missing at random)
P(M|X ) = P(M|X (obs))

MNAR (missing not at random)

impute by 0= doesn't exploit observed values?
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▶ R⋆ = optimal risk without missing data

▶ R⋆
miss = optimal risk with missing data

∆miss := R⋆
miss − R⋆ (missing data error)

▶ Rimp(θ) = the risk of fθ(Xobs,M) = θ⊤Ximp

▶ Rimp(θ
⋆
imp) = optimal risk of linear prediction after imputation by 0

∆imp/miss := Rimp(θ
⋆
imp)− R⋆

miss (imputation error)

▶ Risk decomposition:

Rmiss(fθ) = R⋆+ ∆miss +∆imp/miss︸ ︷︷ ︸
missing data and imputation error

+Rmiss(fθ)− Rimp(θ
⋆
imp)︸ ︷︷ ︸

estimation/optimization error



29 / 42Toy example: how imputed inputs disturb learning

▶ Complete model
▶ Y = X1

▶ X = (X1, . . . ,X1)
▶ R⋆ = 0
▶ M1, . . . ,Md ∼ B(1/2)

▶ With imputed inputs and θ1 = (1, 0, . . . , 0)⊤

▶ X⊤
impθ1 = X1M1

▶ Rimp(θ1) =
1
2
E
[
Y 2

]
▶ With imputed inputs and θ2 = 2(1/d , 1/d , . . . , 1/d)⊤

▶ X⊤
impθ2 = 2

d
X1

∑
j Mj

▶ Rimp(θ2) =
1
d
E
[
X 2
1

]
▶ ∆miss +∆imp/miss ⩽ Rimp(θ2)− R⋆ ⩽ 1

d
E
[
Y 2

]
correlation ⇒ low imputation/missing values error ?
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▶ M1, . . . ,Md ∼ B(1/2)

▶ With imputed inputs and θ1 = (1, 0, . . . , 0)⊤

▶ X⊤
impθ1 = X1M1

▶ Rimp(θ1) =
1
2
E
[
Y 2

]
▶ With imputed inputs and θ2 = 2(1/d , 1/d , . . . , 1/d)⊤
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impθ2 = 2

d
X1

∑
j Mj

▶ Rimp(θ2) =
1
d
E
[
X 2
1

]
▶ ∆miss +∆imp/miss ⩽ Rimp(θ2)− R⋆ ⩽ 1

d
E
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correlation ⇒ low imputation/missing values error ?
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30 / 42Learning w/ imputed-by-0 data = ridge reg?

▶ Ridge-regularized risk with complete data

Rλ(θ) = R(θ) + λ∥θ∥22
▶ Standard in high-dimension settings

Theorem [Ayme, Boyer, Dieuleveut, S. 2023]

Under the MCAR Bernoulli model of probability ρ of observation and
Var(Xj) = 1 ∀j ,

Rimp(θ) = R(ρθ) + ρ(1− ρ)∥θ∥22

Consequences

1. ∆miss +∆imp/miss = ridge bias for λ = 1−ρ
ρ

2. θ⋆imp on a small ball around 0 (implicit regularization)

☞ Imputed MCAR missing values seem to be at the same price of ridge
regularization



31 / 42Learning with low-rank and imputed-by-0 data

▶ Low-rank data: covariance matrix Σ = [XX⊤] is

Σ =
r∑

j=1

λjvjv
⊤
j ,

with λ1 = · · · = λr and r ≪ d .

▶ Bias on low-rank data:

∆miss +∆imp/miss ≲
1− ρ

ρ

r

d
E[Y 2]

correlation ⇒ low imputation/missing values error !



32 / 42Learning with imputed-by-0 data via SGD

▶ Averaged SGD iterates:{
θimp,t =

[
I − γXimp,tX

⊤
imp,t

]
θimp,t−1 + γYtXimp,t

θ̄imp,n = 1
n+1

∑n
t=1 θimp,t

▶ Why use SGD ?

1. Streaming online (one pass only)
2. Minimizes directly the generalization

risk R
3. Friendly assumptions
4. Leverage the implicit regularization

of naive imputations choosing
θimp,0 = 0 and γ = 1/d

√
n.
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Theorem [Ayme, Boyer, Dieuleveut, S. 2023]

Under classical assumptions for SGD,

E
[
Rimp(θ̄imp,n)

]
−R⋆ ⩽ ∆miss+∆imp/miss+

d√
n
∥θ⋆imp∥22+

noise variance√
n

▶ Example: low-rank setting

E
[
Rimp(θ̄imp,n)

]
− R⋆ ≲

(
1

ρ
√
n
+

1− ρ

d

)
r

d
EY 2 +

noise variance√
n

▶ Imputation bias vanishes for d ≫
√
n
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34 / 42Naive imputation implicitly regularizes HD linear models

▶ MCAR inputs
(observation rate=ρ)

▶ All in all

Performing
standard linear regression
on imputed-by-0 data =

Adding a ridge
regularization w/ parameter

λ = 1-observation rate
observation rate



35 / 42Summary

1. Impute-then-regress procedures with consistent predictors

2. Linear regression with missing values

3. Linear regression: A pattern-by-pattern approach

4. Linear regression: Impute-then-regress procedures via zero-imputation

5. Random features models: a way to study the success of naive
imputation



36 / 42Toy example of Random features

▶ Latent observations (hidden) Z ∈ Rp with p = 4:

Z = (age, weight, height, hair color)

▶ Target: Y = β⊤Z+ noise

▶ We take randomly d features of Z to obtain X :
▶ Low dimension d = 2:

X = (age, height)

uncorrelated regime

▶ High dimension d = 10:

X = (age, height, height, age, weight, hair color, weight, age, height)

correlated regime
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Gaussian random features:

▶ Input: Xi,j = Z⊤
i Wj

Latent variables Z1, . . . ,Zn
i.i.d.∼ N (0, Ip)

Random weights W1, . . . ,Wd
i.i.d.∼ U(Sp−1)

▶ Output: Yi = Z⊤
i β⋆ + noise of variance σ2

Key quantities:

▶ R⋆(d) = optimal risk without missing data

▶ R⋆
miss(d) = optimal risk with missing data

∆miss(d) := [R⋆
miss(d)− R⋆(d)]

▶ R⋆
imp(d) = optimal risk of linear prediction after imputation by 0

∆imp/miss(d) :=
[
R⋆
imp(d)− R⋆

miss(d)
]

Rmiss(fθ̄) = R⋆(d) + ∆miss(d) + ∆imp/miss(d)︸ ︷︷ ︸
missing data and imputation error

+ [Rmiss(fθ̄)− R⋆
imp(d)]︸ ︷︷ ︸

estimation/optimization error
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Theorem [Ayme, Boyer, Dieuleveut, Scornet 2024]

Under MCAR assumptions,

▶ Optimal risk without missing data

[R⋆(d)] =

{
σ2 + p−d

p ∥β⋆∥22, when d < p

σ2 when d ⩾ p

▶ Error due to missing data{
∆miss(d) = (1− ρ) dp ∥β

⋆∥22 when d < p

∆miss(d) ⩽ cdρ,p∥β⋆∥22, when d ⩾ p (with cρ,p < 1)

▶ Error due to linear prediction on imputed data{
∆imp/miss(d) ⩽

ρ(d−1)
p−ρ(d−1)−2∆miss(d) when d < p

∆imp/miss(d) + ∆miss(d) ⩽
p

ρd+(1−ρ)p∥β
⋆∥22 when d ⩾ p
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▶ Low dimensions (uncorrelated regime):
▶ Missing values error represents 1− ρ of the explained variance

without missing values: missing features are lost
▶ Error due to imputation is negligible: imputation is optimal

▶ High dimensions (correlated regime):
▶ Error due to missing values error decreases exponentially fast:

missing features can be retrieve from the others
▶ Extension of the low rank setting for the imputation bias: correlation

⇒ low imputation bias
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40 / 42Extension of the high dimensions result

limd ∆imp/miss(d) + ∆miss(d) = 0 still holds, for instance when

▶ General random features:
▶ Non-linear inputs: Xi,j = ψ(Zi ,Wj)
▶ Non-linear output: Y = f ⋆(Z) + ε with f ⋆ continuous

Ex: Random Fourier features (RFF)
Wj = (Aj ,Bj) ∼ N (0, I )⊗ U([0, 2π])
Xi,j = cos(A⊤

j Zi + Bj)

▶ Non-MCAR missing values:
Ex: Logistic model on the latent covariate:

P (Mj = 1|Z ) = 1

1+ ew
′
0j+w ′⊤

j Z



41 / 42Conclusion

Bayes predictor f ⋆(X̃ ) =
∑

m∈{0,1}d E
[
Y |Xobs(m),M = m

]
1M=m.

Two common strategies:

▶ Impute-then-regress strategies - impute the data then learn on the
imputed data set

▶ Computationally e�cient but possibly inconsistent

▶ Consistent if used with a non-parametric learning algorithm

▶ Linear models - Zero imputation is inconsistent but converges in
high-dimensional settings (rate of

√
d/n)

▶ Pattern-by-pattern strategies - use a di�erent predictor for each
missing pattern

▶ Consistent by design but intractable in most situations

▶ Linear models - Rate of consistency of d2/n for independent
Bernoulli missing indicators but 2d/n in general (not improvable)
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Thank you!

☞ Near-optimal rate of consistency for linear models with missing values. A.
Ayme, C. Boyer, A. Dieuleveut, E. Scornet. ICML 2022.

☞ Naive imputation implicitly regularizes high-dimensional linear models. A.
Ayme, C. Boyer, A. Dieuleveut, E. Scornet. ICML 2023.

☞ Random features models: a way to study the success of naive imputation.
A. Ayme, C. Boyer, A. Dieuleveut, E. Scornet. ICML 2024.
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